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ABSTRACT

With the recent increase in popularity of VR devices, 360-degree

video has become increasingly popular. As more users experience

this new medium, it will likely see further increases in popularity

as users experience its greater immersiveness compared to tradi-

tional video streams. 360-degree video streams must encode the

omnidirectional view, and, with current encoding techniques, these

views require significantly higher bandwidth than traditional video

streams. These larger bandwidth requirements comprise the main

barrier toward wider adoption by video streaming services.

To reduce bandwidth requirements of 360-degree streaming, we

propose the MiniView Layout. Compared to the standard cube lay-

out, with equal pixel densities, 360-degree videos encoded in the

MiniView Layout can save 16% of the encoded video size while de-

livering similar visual qualities. In conjunction with the MiniView

Layout, we make the following contributions toward improving the

360-degree video ecosystem: i) We create a łprojection efficiencyž

metric that quantifies the efficiencies of sphere-to-2D projections. ii)

We introduce the ffmpeg360 tool. ffmpeg360 transcodes 360-degree

videos and measures comparative 360-degree video quality given

user head movement traces. The tool performs these tasks effi-

ciently, using OpenGL for GPU acceleration.
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1 INTRODUCTION

Combined with head mounted display systems, 360-degree video

streams provide greater levels of immersiveness than traditional
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video streams. This combination gives users intuitive control of

the viewing experience, providing a sensation closer to łbeing

in the scenež. As devices for viewing 360-degree video decrease

in price and become more-widely available, their share of video

streaming traffic promises to increase as users see the advantages

of the immersive 360-degree setting over traditional videos.

A significant bottleneck toward widespread adoption of 360-

degree video streaming is its large bandwidth requirements. 360-

degree videos encode the omnidirectional view, but users can only

consume a limited field of view (FOV), e.g., a view spanning 100-

degrees in both the horizontal and vertical directions. To render

high quality views of the video, the underlying representation of

the 360-degree video must be encoded in much higher quality. For

example, to render 1080p 100×100-degree FOVs, the underlying

360 video stream must be 4K resolution or above using current 360-

degree video representations. As a result, much of the video data is

downloaded during streaming but never consumed (i.e., wasted).

Much existing research has focused on improving the bandwidth

efficiency by reducing wasted data via tiling [10, 11, 14ś16, 20ś22]

and offset projections [3, 23]. With tiling, only tiles that overlap

with the user’s predicted viewport need to be downloaded in high

quality, while other tiles can be downloaded in low quality or not

downloaded at all. Offset projections have also been proposed to

reduce view-level waste. With offset projections, distortion is ap-

plied to the spherical surface so that in the resulting rectangular

projection, more pixels are devoted to a specific direction on the

sphere. Multiple versions of offset-projected videos are encoded,

with each version concentrating pixels in a different direction on the

sphere. During streaming, only the version whose pixel concentra-

tion direction best matches the user’s predicted view is downloaded.

To achieve the best bandwidth savings without compromising vi-

sual quality, both approaches require predicting the user’s viewing

direction at the time a segment is requested by the client [13].

Accurately predicting the user’s head movement, however, is chal-

lenging [8, 17]. Specifically, if the predicted viewport significantly

deviates from the actual user’s viewport during streaming, the

user’s view will be rendered from low quality tiles or offset projec-

tionswhose pixels are concentrated at a different spherical direction,

resulting in bad visual quality of rendered views.

Besides bandwidth waste due to unviewed video data, a portion

of bandwidth inefficiency results from an inability to directly encode
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and transmit the omnidirectional view 360-degree video provides.

The omnidirectional view is most naturally represented as pixels

on the surface of a sphere. Modern codecs encode pixels on a plane

very efficiently but cannot directly consume spherical pixels. The

typical solution to this incompatibility is to first map spherical

pixels onto a 2D rectangular plane, then encode the plane as a

frame in a standard video stream. This indirection is not without its

cost; two types of inefficiency result: First, uniformly dense pixels

on the sphere’s surface cannot be mapped to uniformly dense pixels

on a plane. Some portions of the sphere will be over-represented,

resulting in inefficiency. For example, the popular equirectangular

projection [4] for encoding 360-degree videos over-samples pixels

around the poles of the sphere. Second, the distortions from these

planar projections can affect encoding efficiency. For example, the

curvature of lines in an image affects encoding efficiency, so if

different projections produce planar representations of the spherical

surface with different amounts of curvature, then these projections

will likely be encoded with different compression ratios.

In this paper, we focus on improving bandwidth efficiency of 360-

degree video streaming by reducing the quantity of over-represented

pixels in the spherical-to-2D projection. To better understand how

changing the projection can improve bandwidth efficiency, we in-

troduce a method for quantifying the efficiency of any projection.

Using this method of determining bandwidth efficiency, we observe

that the efficiency of rectilinear projections [7] increases as the size

of these projections decrease. For example, a 90×90 degree cube

face from the standard cubic projection has a projection efficiency

of about 52% while the 30×30 degree portion of the center of the

cube face has an efficiency of about 93%.

Following this observation, we propose a new system of efficient

projections of spherical pixels we call the MiniView Layout. A

miniview encodes a small portion of the sphere by applying the

rectilinear projection with a small FOV. To construct the MiniView

Layout, we selected an efficient set of miniviews that fully cover

the spherical surface. This construction must balance three types of

inefficiencies: i) projection inefficiency due to rectilinear-projection-

incurred redundant pixels, ii) compression inefficiency due to small-

sized miniviews, and iii) overlap inefficiency caused by partially

overlapping miniviews. To this end, we designed a dynamic pro-

gramming algorithm for covering the spherical surface with an

efficient set of miniviews. This set of miniviews is then laid out on

a 2D rectangular plane ś thus the name łMiniView Layoutž ś so

that they can be encoded as a single video frame.

To evaluate the quality of these encodings, we created a tool

called ffmpeg360. ffmpeg360 both transcodes 360-degree videos

into the MiniView Layout and renders these views from an input

MiniView Layout. Using ffmpeg360, we compared the visual quality

(peak signal-to-noise ratio (PSNR) and structural similarity (SSIM))

of views rendered by the MiniView Layout against views rendered

by the standard and equi-angular cubic projections. Results show

that the MiniView Layout can provide as good visual quality of ren-

dered views while saving 16% storage and downloading bandwidth

compared to the standard cubic projection.

This paper makes the following major contributions:

• We introduce a new metric łprojection efficiencyž to quantify

the efficiency of various sphere-to-2D projections.

• We propose the łMiniView Layoutž for projecting spherical pix-

els. The MiniView Layout balances projection efficiency and

compression efficiency and can save 16% encoded video size

and streaming bandwidth compared to the standard cube while

providing similar visual qualities.

• We introduce the toolffmpeg360. ffmpeg360 transcodes 360-degree

videos to and from various spherical projections. It uses OpenGL

to accelerate geometry transformation and pixel sampling. Given

a trace of user head movements, ffmpeg360 can create a video of

views rendered for the user, making it possible to perform visual

quality analysis of the 360-degree video as experienced by the

user. We have made the source code of this tool available online.

2 MOTIVATION

2.1 Projection Efficiency

360-degree videos encode information about every direction sur-

rounding the camera location. As a result, pixels in 360-degree

videos are most naturally represented as pixels on the surface of

a sphere. To encode these spherical pixels, we typically first map

them on to a rectangular surface and use standard video codec such

as H.264, HEVC to efficiently compress them.

These mappings add redundant pixels and result in projection

inefficiency. We characterize projection efficiency as follows:

Projection Efficiency =
area on the spherical surface

area on the calibrated projection

For example, for a unit spherical surface with surface area 4π , a

frame generated through the equirectangular projection [4] covers

a corresponding rectangular area of 2π × π = 2π 2. Thus, if we

were able to transmit the spherical surface directly, we would send

4π/2π 2 ≈ 64% of the pixels compared to the equirectangular image.

To compute projection inefficiency, it is necessary to ensure that

the size of the projection is calibrated appropriately against the unit

sphere. Here, we select the projection size where the lowest pixel

density across the set of all generated views from the unit sphere

matches the lowest pixel density from a projection. For example,

since the pixel density at the center of the 2 × 2 cube face (in the

limit of an infinitesimally small area) matches the pixel density on

the unit sphere, we select the 2 × 2 × 2 cube as our calibrated cubic

projection.

While it is commonly believed that the cubic projection [2] is

more efficient than the equirectangular projection, its overall pro-

jection efficiency is actually worse. To cover a unit sphere, six cube

faces (from the calibrated cubic projection) each with area 2 × 2

are needed, requiring a rectangular area of 24. As a result, the pro-

jection efficiency of cubic projection is only 52%. Efficiency in the

cubic projection decreases with distance from the center of the cube

face; areas near the edge of a cube face correspond to smaller areas

on the sphere than equal-sized areas at the center of the cube face.

The cubic projection is a special case of the more general rec-

tilinear projection [7]. With the rectilinear projection, we place a

plane tangent to the sphere at a single point. To fill a pixel on the

plane, we project a ray from center of the sphere to the pixel. This

ray also intersects with the surface of the sphere. The pixel value

at this intersection point is used to fill the pixel on the plane.



Table 1: Projection efficiency of various schemes projecting

an area on the sphere to 2D planes. Degrees by degrees in-

dicates a rectilinear projection of a portion of the spherical

surface.

Area on

the Sphere

Area on the

Calibrated

Projection

Projection

Efficiency

Equirectangle 4π 2π 2 0.637

Equi-angular Cube 4π 6
4π

2 0.849

Standard Cube 4π 24 0.523

100° × 100° 2.509 5.681 0.442

90° × 90° (cube face) 4
6π 4 0.523

70° × 70° 1.341 1.961 0.684

50° × 50° 0.718 0.870 0.826

30° × 30° 0.268 0.287 0.934

10° × 10° 0.030 0.031 0.992

MiniView Layout 4π 15.732 0.799

10 20 30 40 50 60 70 80 90
miniview's FOV

0.3

0.6

0.9

1.2

1.5

Co
m

pr
es

sio
n 

Ef
fic

ie
nc

y

Figure 1: Compression efficiencies of rectilinear projections

with different FOVs.

Table 1 shows the projection efficiency of rectilinear projections

with different fields of view. To calculate the projection efficiency,

we consider a unit sphere and compare the area on the projection

with the area on the sphere that is covered by the projection1. For

rectilinear projections, the projection efficiency increases as the

FOV decreases.

2.2 Compression Efficiency

Despite their high projection efficiencies, encoding viewswith small

fields of view suffers from another type of inefficiency: compres-

sion inefficiency. With the same pixel density as views with large

FOVs, small FOV views encode fewer pixels. As a result, standard

codecs typically do not compress segments with small FOV views

as efficiently as large FOV views with more pixels.

To illustrate this problem, we selected five 360-degree videos

and created 1-second long segments from these videos. We then

rendered and encoded views with FOVs varying from 10 degrees to

1The integral to calculate area on the sphere is

4 ×

∫ v-fov
2

0

∫ arctan
(

tan h-fov
2 ×cosx

)

0
cosydydx

where h-fov is horizontal field of view and v-fov is vertical field of view.

= tan(π/8) = 0.41
= (π/8) / (π/4) = 0.5

π/8 π/8

Figure 2: Comparison between standard cube and equi-

angular cube (EAC).

90 degrees (with vertical FOV equals to horizontal FOV) at a total

of 100 randomly selected orientations. For the 90 degrees view, the

view’s resolution is set to 640x640. For a view with θ × θ FOV, its

resolution is set correspondingly to 640 · tan(θ/2) × 640 · tan(θ/2).

For each FOV value, we calculated the average size of encoded

views and used this average size to obtain compression efficiency

as follows:

Compression Efficiency =
# of pixels on each frame

encoded size in bytes

Figure 1 shows that as the FOV decreases, compression efficiency

also decreases. As a result, if we hope to minimize the storage size

of encoded 360-degree videos, we should consider both types of

(in)efficiencies.

2.3 Equi-angular Cube (EAC)

To address the projection inefficiency of cubic projections, Google

recently proposed equi-angular cube (EAC) [1]. EAC attempts to

address the problem of pixel inefficiency in cube faces by distorting

the standard cubic projection to reduce projection inefficiency.

In the standard rectilinear projection, as pixels’ distances from

the tangent point increase, they require increasingly large amounts

of area on the projected plane. The EAC projection distorts the

standard rectilinear projection so that areas on the plane more

closely match their corresponding areas on the sphere. To do so,

pixels on the spherical surface are mapped to pixels on the plane

through the following relation. Consider a pixel p on a standard

cube face, the pixel’s coordinates within the cube face is represented

aspx ∈ [−1, 1] andpy ∈ [−1, 1]. To create an equi-angular cube face,

we take the same pixels, but re-arrange them so that the coordinates

of a pixel q on the equi-angular cube face is represented as:

qx =
4

π
× arctan(px ), qy =

4

π
× arctan(py )

Figure 2 shows an example how pixels on the standard cube face

are re-arranged. Pixels that are close to the center of the cube face

are moved farther away from the center on the resulting EAC face.

When the size of the EAC face is π
2 × π

2 , the density at the center

horizontal and vertical lines on the EAC face matches the corre-

sponding density on the spherical surface. Therefore, the calibrated

EAC projection area is 6 × π
2 × π

2 . (Recall that the calibrated size

must match minimum pixel densities from any generated view

generated from the sphere and the projection.)



1: Create a set of candidate miniviews with pitch varying from 0 to 90 degrees, FOV varying from 10 to 90 degrees, both in

1-degree increments. (Roll of these miniviews is always 0. The yaw direction is aligned with the latitude and therefore can

be any value and does not affect our result. We choose yaw=0.)

2: Create an array S of cost (i.e., size) associated with these candidate miniviews.

3: procedure Patch(L,∆L,miniview)

4: Calculate b, the maximum longitudinal extent fully covered by theminiview between latitude L and L − ∆L

5: return b

6: procedure ComputeMiniViews(S)

7: for all valid miniviews do

8: for all valid (L,∆L) for a given miniview do

9: b = Patch(L,∆L,miniview)

10: Compute cost c(L,∆L,miniview) =
⌈

360

b

⌉

× S[miniview]

11: Initialize R(L) = 0 for L ≤ 0; R(L) = inf otherwise

12: for all L do

13: for all ∆L do

14: R(L) = min
(

R(L), min
miniview

(

c(L,∆L,miniview)
)

+ R(L − ∆L)
)

Figure 3: Computing an efficient miniview coverage using dynamic programming. R(L) stores the minimum cost calculated

to cover the sphere from latitude 0 to L. c(L,∆L,miniview) represents the cost using miniview miniview to cover the latitudinal

band between L and L − ∆L. The backtracking phase is omitted from the pseudocode.

3 DESIGN OF MINIVIEW LAYOUT

In this section, we propose a new layout designed to address the

projection inefficiency issue and save storage size of encoded 360-

degree videos without incurring visual quality loss. This new layout

encodes 360-degree videos using a set of views created by the

rectilinear projection. These views have smaller FOVs compared to

cube faces. We thus refer to these views as miniviews.

Each miniview is parameterized by <orientation, fov, and pixel

density>. Here, orientation is its Euler angle (yaw and pitch) relation

to a fixed, base set of coordinate axes (we fix roll to 0). Horizontal

and vertical fields of view are both set to the same fov value. To

decide the best set of miniviews, we must balance three types of

inefficiencies: projection inefficiency, compression inefficiency, and

overlap inefficiency. While miniviews with small FOVs have better

projection efficiency compared to cube faces, they can suffer from

both compression and overlap inefficiencies. Overlap inefficiency

occurs when the same pixels (on the spherical surface) occur more

than once in overlapping miniviews used to encode 360-degree

views. To efficiently encode 360-degree video, we thus need to

select a set of that both fully cover the spherical surface and also

incur small costs for both overlap and projection inefficiency.

3.1 Problem Formulation

It is possible to formulate the miniview selection problem as an

optimization problem. The optimization problem constrains the

selected set of miniviews to fully cover the sphere while minimizing

the storage cost of miniview set. Assuming that compression of each

miniview occurs independently, the miniview selection problem

can be written as follows:

minimize: c⊤x

subject to: Mx ≥ 1

xi ∈ {0, 1}∀i

To construct this optimization problem, we begin with a (finite) set

of candidate miniviews. A vector c estimates the cost (e.g., size) of

each candidate miniview. Solution to the optimization problem, x ,

is a binary vector that encodes the presence of candidate miniviews

in the selected optimal set. We also need to represent the area

on the sphere a miniview can cover and check if the selected set

of miniviews can fully cover the entire sphere. To do so, we can

decompose the spherical surface into discrete sub-areas and encode

each miniview’s coverage of these areas in a matrixM .

Regardless of how the sphere is discretized, the optimization

problem formulated above is a weighted set cover problem [12] and

is NP-hard. Optimal solutions to the problem are not feasible to

compute exactly. While a greedy algorithm produces a polynomial

time approximation to the weighted set cover problem, the solu-

tions produced by the greedy approximation are ineffective for the

miniview domain.

3.2 MiniView Selection using Dynamic
Programming

To effectively solve this problem in polynomial time, we propose a

structural heuristic based on a decomposition of the spherical ge-

ometry. We discretize a hemisphere (from the equator to the north

pole) into horizontal bands, where each band is described by a lati-

tude range. We then consider each band of latitude independently.

This decomposition allows us to formulate dynamic program based

on a cost function for each band.

Specifically, the dynamic programming algorithm computes the

values of function R(L), the minimum cost needed to fully cover

portion of the sphere from latitude 0 to latitude L, where L is an

integer between 1 and 90. Here, cost represents the total number of

bytes of all miniviews selected to cover the corresponding area on

the sphere. R(L) can be calculated using the following recurrence:

R(L) = min
∆L

(

R(L − ∆L) +C(L,∆L)
)

, (1)



Figure 4: In this figure, we show an equirectangular image.

The red shaded area represents the spherical area covered by

a miniview oriented at < pitch = 60, yaw = 0 > with horizon-

tal and vertical FOV of 30 degrees. Given L = 73,∆L = 20, we

calculate the maximum longitudinal extent b the miniview

covers is 50.8. If we want to cover the entire band between

latitude L and L − ∆L with miniviews with the same pitch

and fov, we need n =
⌈

360
b

⌉

= 8 such miniviews.

where C(L,∆L) is the cost needed to cover portion of the sphere

from latitude L − ∆L to latitude L. Figure 3 shows the dynamic

programming algorithm used to solve this recurrence. We first cal-

culate c(L,∆L,miniview(pitch,f ov)) = n × S(miniview(pitch,f ov)),

representing the cost needed to cover the latitude band between L

and L−∆L using miniviews with pitch ofpitch and fov of f ov . Here,

S(miniview) represents the size ofminiview , and n represents the

number of such miniviews needed. C(L,∆L) can thus be calculated

as min
miniview

(

c(L,∆L,miniview)
)

. The complexity of this algorithm

is O(|L|3 · |F |), where |L| is the number of latitude bands, and |F | is

the number of all available field of view (FOV) values, i.e., angular

dimensions of each miniview.

To obtain n, we calculate the maximum longitudinal extent b the

miniview covers between latitude L and L − ∆L. Figure 4 illustrates

how b is calculated. To fully cover the latitudinal band, n =
⌈

360
b

⌉

miniview(pitch,f ov)s are needed.

To obtain the encoded sizes of miniviews, we interpolate a func-

tion f (·) using the average sizes of miniviews of different FOVs

we obtained in Section 2.2. f (·) takes as input a miniview’s area in

pixels and outputs its encoded size in bytes. S(miniview) is thus

calculated as f (area(miniview)). Figure 5 shows our interpolation

function’s mapping of miniview pixel counts to encoded miniview

sizes.

Note that the average sizes of these miniviews should be an esti-

mate of the number of bytes used to encode the miniview within

the layout image. In addition, depending on the set of videos en-

coded by the layout, the mapping from number of pixels to encoded

size could differ. For instance, in the most extreme case, a different

function, f , could be estimated for each encoded video, resulting

in different miniview layouts for each video in a dataset.

We use the dynamic programming algorithm to calculate R(90)

and record the set of miniviews selected to cover each latitudi-

nal band. Table 2 shows the parameters of all miniviews used to

cover the sphere. A total of 82 miniviews are used. We then lay the

miniviews out on a rectangular plane as in Figure 6.
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Figure 5: We fit a miniview’s size as a function of the num-

ber of pixels to be encoded. S(miniview) = f (area(miniview))),

where f (·) is interpolated using points indicated in circle

marker. All miniviews were created so that their pixel den-

sities match those of a miniview with 90-degree horizon-

tal and vertical FOV containing 640x640 pixels. That is, a

miniview with θ × θ FOV was generated to comprise a 640 ·

tan(θ/2) × 640 · tan(θ/2) image. (All miniviews are square.)

Table 2: Yaw and pitch values of miniview orientations (in

degrees) in the MiniView layout. A total of 82 miniviews are

used for encoding a 360-degree video in this layout. (This

table omits roll, which is always 0.)

FOV Pitch Yaw

44 90 0

20 59 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330

26 37
0, 27.7, 55.4, 83.1, 110.8, 138.5, 166.2, 193.8, 221.5,

249.2, 276.9, 304.6, 332.3

25 12
0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264,

288, 312, 336

25 -12
0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264,

288, 312, 336

26 -37
0, 27.7, 55.4, 83.1, 110.8, 138.5, 166.2, 193.8, 221.5,

249.2, 276.9, 304.6, 332.3
20 -59 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330

44 -90 0

Figure 6: The final MiniView layout, placing 82 miniviews

on a rectangular frame.

Projection efficiency.MiniView layout’s projection efficiency is

shown in the bottom row in Table 1. With almost 80% projection

efficiency, the MiniView layout outperforms both the equirectan-

gular projection and the cubic projection.



4 IMPLEMENTATION

To encode 360-degree videos in the MiniView Layout, we created

a tool called ffmpeg360.2 ffmpeg360 extends the ffmpeg [5] source

code and implements a new video filter called 360-project filter. It

uses OpenGL [6] to speed up geometry transformation and pixel

sampling. We implemented different fragment shaders to perform

pixel sampling required by different input and output projection

types.

Input 360-degree video. ffmpeg360 can take input 360-degree

videos encoded using various projection and layout schemes in-

cluding the equirectangular projection (equi), the standard cubic

projection (cube), the equi-angular cubic projection (eac), and the

miniview layout (mvl). Information about each face/miniview is

provided in an input layout file. Each line in this file contains the

following information about a face/miniview of the input 360 video:

w:h:x-fov:y-fov:x-rotation:y-rotation:z-rotation:u:v

Here, w,h are the width and height of this face/miniview normal-

ized against the input frame’s width and height. x-fov,y-fov are

the horizontal and vertical FOVs of the corresponding face/miniview.

For example, the horizontal and vertical FOVs of both cube and

eac faces are 90 degrees. *-rotation represents the orientation of

the equirectangular projection, face, or miniview around the x, y,

or z axis. Finally, u,v are the coordinates of the upper left corner

of the face/miniview on the input frame.

Frame-level processing. Given a 360-degree frame and the ori-

entation and FOV of a view, our 360-project filter can output the

łfilteredž/transformed frame that represents the view rendered from

a 360-degree frame. Note that miniviews in mvl and cube faces in

cube are all rendered views and can be generated using this filter.

Using a different fragment shader, we can also use this filter to

generate eac faces.

Output 360-degree video. After filtered frames are generated, we

place these un-encoded frames on a single frame using ffmpeg’s

overlay filter. An output layout file is used to specify the position

of each face/miniview on the final composite frame. These frames

are then sent to the video encoder. Using this pipeline, we can

transform 360-degree videos into various projection and layout

schemes provided as long as input and output layout files are given.

Output video of rendered views. Given traces of a user’s head

movement during 360-degree video playback, we can also use ffm-

peg360 to generate views users observe over time and encode them

into lossless videos. This allows us to create realistic videos mim-

icking a user’s immersive watching experience. These videos can

then be used for comparing the visual quality of views rendered

from different projection and layout schemes.

5 EVALUATION

For evaluation, we compare our proposed MiniView Layout against

two existing 360-degree video projection methods: the Standard

Cube and the Equi-angular Cube. Figure 7 shows the resulting im-

ages when one 360-degree image is encoded using these three

different methods. We focus our evaluation on the following three

metrics: (i) compressed video size, (ii) visual quality of views ren-

dered from 360-degree videos encoded by each method, and (iii)

decoding and rendering times.

2 https://github.com/bingsyslab/ffmpeg360

We use two public-available 360-degree video datasets [9, 19].

Dataset-1 [9] contains five 360-degree videos and 58 users’ view

orientations (i.e., head movement data) when viewing these videos

in head-mounted displays. Dataset-2 [19] contains 18 360-degree

videos and 48 users’ head movement traces. These datasets allow

us to extract a set of views representing realistic patterns of 360

video consumption. To avoid biasing our evaluation toward the

results from longer videos, we divide each video into 1-second long

segments and uniformly select 10 segments from each video for

evaluation. In total, we consider 230 segments selected from all 23

videos from two datasets.

For each selected segment, we start with a high quality baseline

video included in these datasets, encoded using the equirectangular

projection. We refer to this baseline video segment as BASE. We

then use this BASE video segment as input to our ffmpeg360 tool to

generate three videos: standard cube video segment in 1920x1280

resolution (CUBE), equi-angular video segment in 1920x1280 res-

olution (EAC), and MiniView Layout video segment in 2240x832

resolution (MVL). These generated CUBE and EAC video segments

have the same number of pixels, and the CUBE and MVL video

segments have the same pixel density. Here pixel density indicates

the average number of pixels per unit area over the entire projected

plane. Note that this pixel density value does not represent pixel

density on the spherical surface. Pixel density on the spherical sur-

face will vary depending on both the projection type and the pixel’s

position on the sphere.

We compare the sizes of these encoded CUBE, EAC, and MVL

segments to gain insights on their compression efficiencies. We fur-

ther use all users’ head movement traces associated with a segment

to generate rendered views and compare their visual quality against

views rendered from a high quality baseline video. Finally, we com-

pare the time needed to decode and render views from 360-degree

videos encoded using different methods.

5.1 Pixel count and compressed size

With the same pixel density, MVL video segments need 24.17%

fewer pixels to encode the complete spherical view compared to

CUBE. We further compare the compressed sizes of MVL segments

with CUBE and EAC. For fair comparison, we use x264 to encode

these segments and configure x264 to use the same constant rate

factor (crf=23). In this way, all three methods are subject to the

same level of compression. Because the 23 videos in our datasets

exhibit different characteristics, we categorize them into two types:

moving-camera videos and static-camera videos.

For each segment, we normalize encoded EAC and MVL sizes

against encoded CUBE size. Over all video segments, MVL segments

consume on average 16% less space compared to CUBE segments.

This indicates that miniviews have smaller compression efficiency

compared to cube faces ś 24% savings in pixel count only results

in 16% savings in compressed size. However, the miniview layout

has much higher projection efficiency compared to the standard

cubic projection. As a result, the final compressed MVL segments

are significantly smaller than CUBE segments.

The results for moving-camera videos and static-camera videos

are shown in Figure 8(a) and Figure 9(a). For static-camera videos,

EAC segments with the same number of pixels consume slightly

https://github.com/bingsyslab/ffmpeg360


(a) Standard Cube (1920x1280) (b) Equi-angular Cube (1920x1280) (c) The MiniView Layout (2240x832)

Figure 7: A 360-degree image encoded in standard and equi-angular cube as well as our proposed MiniView layout.
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Figure 8: Moving-camera videos: Figure (a) shows the distribution of encoded EAC andMVL segment sizes normalized against

encodedCUBE segment sizes.MVL segments have the smallest sizes. Figures (b) and (c) show the distribution of PSNR and SSIM

between views generated from CUBE/EAC/MVL segments and views generated from baseline segments. The three projection

and layout schemes exhibit almost the same visual quality.
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Figure 9: Static-camera videos: Figure (a) shows the distribution of encoded EAC and MVL segment sizes normalized against

encodedCUBE segment sizes.MVL segments have the smallest sizes. EAC segment sizes are slightly bigger thanCUBE segment

sizes. Figures (b) and (c) show the distribution of PSNR and SSIM between views generated from CUBE/EAC/MVL segments

and views generated from baseline segments. EAC segments perform the best.

more space compared to CUBE segments ś both the median and

mean ratio between EAC and CUBE is 1.02. MVL segments consume

less space than CUBE segments ś the median and mean ratios are

0.83 and 0.84, respectively. For moving-camera videos, both the

median and mean ratios between EAC and CUBE are 1.00. MVL

consistently saves storage space, with the median and mean ratios

being 0.84 and 0.83, respectively.

5.2 Visual quality

Next, we compare the visual qualities of views rendered from MVL,

EAC, and CUBE segments. In these experiments, segments are all

encoded using x264 with the same crf setting of 23.

We consider user views to span 100-degree vertical and hori-

zontal FOVs at a resolution of 800x800. For each video segment,

we decode all its frames and select a user’s head movement trace

over the period of this segment’s playback time from the dataset.

For each frame, we render the views user observe based on the

extracted view orientations and encode these rendered views using

lossless H.264 encoding (this can be achieved by setting crf=0 in

x264). Note that as a user’s head position may change over a very

short period of time, view generation in a segment is frame-based.

For visual quality analysis, we compare views generated by

CUBE, EAC, and MVL segments with views generated by their cor-

responding baseline BASE segments.We use objective visual quality
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Figure 10: Distribution of CUBE/EAC/MVL per-frame decod-

ing and rendering times.

metrics PSNR and SSIM [18]. Both metrics have been implemented

by ffmpeg. Given a pair of videos for comparison, ffmpeg can out-

put these visual quality metrics frame-by-frame. We thus report

the PSNR and SSIM between CUBE-, EAC-, MVL-generated view

videos and BASE-generated view videos using ffmpeg-calculated

statistics directly.

Figure 8 show the PSNR and SSIM of views generated from

moving-camera videos. We can observe that the three types of

layouts exhibit almost the same visual quality. The median values

of PSNR between BASE and CUBE/EAC/MVL are 30.72/30.74/30.67

dB, respectively. The median SSIM values are 0.9269 (CUBE), 0.9282

(EAC), 0.9223 (MVL), respectively. For static-camera videos, the

results are shown in Figure 9. We can observe that the MVL views

have slightly lower visual quality: the median PSNR (SSIM) values

are 40.88 dB (0.98), 41.27 dB (0.98), and 38.01 dB (0.97) for CUBE,

EAC, and MVL, respectively.

5.3 Decoding and rendering time

Finally, we focus on MVL’s performance on the client side. Specifi-

cally, we investigate if it takes longer to render views from MVL

segments compared to CUBE and EAC segments. To do so, for each

video segment, we measure the time it takes to decode and render

views with changing orientation. This emulates the decoding and

rendering time during real 360-degree video playback. To measure

this time, we use a similar setup using ffmpeg360 on a Linux com-

puter as our previous experiments. However, since we focus on the

decoding and rendering time here, we do not encode or store views

after they are rendered. Depending on different videos’ frame rates,

the number of frames in 1-second long segments may be different.

We thus report the average decoding and rendering time per frame.

The results are shown in Figure 10. Decoding and renderingMVL-

encoded video is faster than both CUBE and EAC. The median times

to decode and render one frame in 1-second long CUBE, EAC, and

MVL segments are 18 ms, 18.4 ms, and 15.3 ms, respectively.

6 DISCUSSION

A number of extensions to the MiniView Layout are possible that

could improve performance under the right scenario. We have

not evaluated these extensions directly as they do not affect the

performance of core MiniView scheme.

The MiniView is naturally extensible to tiling strategies. In these

approaches, rather than decomposing a source projection into equal-

sized tiles, each miniview would be independently encoded into

segments, and these segments would be requested independently

by the streaming client as needed. As with other projection types,

the MiniView Layout can also be encoded as offset representations

by moving the camera perspective within the sphere. Applying

the equi-angular transformation to miniviews is also possible. The

mechanism is the same for each miniview as for each cube face.

However, since miniviews are typically smaller than cube faces, the

corresponding improvements in projection efficiency will not be

as much. The idea of applying the equi-angular transform to the

miniview can be extended to using other non-rectilinear projections

as miniviews. The requirements for such application would be the

same for the rectilinear transform: i) the set of miniviews must

cover the sphere and ii) projection efficiency should increase as the

size of the miniview decreases.

7 CONCLUSION

To develop better understandings of projections used in 360-degree

video, this work introduces a łprojection efficiencyž metric. łPro-

jection efficiencyž quantifies the efficiencies of sphere-to-2D pro-

jections. Our analysis of different projections show that the degree

of efficiency improvements of smaller rectilinear projections over

the larger 90×90 projections used in the standard cube.

This analysis motivated the MiniView Layout. The MiniView

layout encodes the 360-degree view using smaller-FOV projections

than the standard cube, increasing projection efficiency. However,

it must balance this increased efficiency against losses from both

encoding efficiency, which decreases as the miniview size decreases,

and overlap inefficiency, which is incurredwhenmultipleminiviews

cover the same set of spherical pixels.

To measure the MiniView Layout’s performance, we developed

the ffmpeg360 tool. ffmpeg360 transcodes 360-degree videos and

measures comparative 360-degree video quality given user head

movement traces, allowing us to compare MiniView performance

against the Standard Cube and Equi-angular Cube. Experiments

were run efficiently, as ffmpeg360 accelerates encoding and render-

ing through OpenGL’s GPU interface.

From these experiments, we found that at equal pixel densities,

the MiniView layout saves 16% of the encoded video size while

delivering similar visual qualities for high-motion videos compared

to both the Standard Cube and Equi-angular Cube layouts.

The MiniView Layout is fast to decode and render, as it requires

fewer pixels than other approaches. It is extensible to tile-based

approaches, compatible with offset and transformation techniques

(e.g., the equi-angular transform), and the layout can be adapted

to specific videos or datasets potentially improving its efficiency

under different video-specific conditions.
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